Как узнать градус угла без транспортира — MOREREMONTA
1. Для того, чтобы узнать угол между двумя стенами делаем отметки на стенах на одинаковом расстоянии от угла (например 50 или 100 см от угла, чем больше, тем точнее). Обозначим это расстояние ‘a’. Дальше.
2. Дальше меряем расстояние между отметками (т.е диагональ угла) — обозначим ‘С’.
3. Потом расчёты —
Осталось рассчитать, сколько градусов в вашем угле по формуле: cos(γ) = (a 2 + a 2 – c 2 ) / (2 • a • a)
Получив cos(γ) угла, далее через функцию arccos узнаём сколько это будет в градусах: arccos (cos(γ)) = угол.
Т.е. по примеру это: (50 2 + 50 2 – 71,5 2 ) / (2 • 50 • 50) = -0,02245 отсюда arccos (-0,02245)= 91.28 градусов.
Здесь можно посчитать сразу!
Наш калькулятор:
Доступ к калькулятору платный!
На неделю — 37 р!
Что нужно сделать?
1. Зарегистрироваться — здесь!
2. Войти — здесь!
3. Пополнить счёт, кликнув по картинке (виза, master card, мобильные операторы) —
При отделочных работах и строительстве бывает нужна четкая геометрия: перпендикулярные стены и иные конструкции, требующие прямого угла в 90 градусов. Обыкновенный угольник не может позволить проверить или разметить углы со сторонами в несколько метров. Описываемый же метод превосходно подходит для разметки или проверки любых углов — длинна сторон не ограничена. Основной инструмент для измерений — рулетка.
Мы будем рассматривать точную разметку прямого угла, а также метод проверки уже размеченных углов на стенах и других объектах.
Теорема Пифагора
Теорема основана на утверждении, что у прямоугольного треугольника сумма квадратов длин катетов равна квадрату длины гипотенузы
Стороны a и b — катеты, между которыми угол равен ровно 90 градусов. Следовательно, сторона c — гипотенуза. Подставляя в эту формулу две известные величины, мы можем вычислить третью, неизвестную. А следовательно можем размечать прямые углы, а также проверять их.
Теорема Пифагора известна еще под названием «египетский треугольник». Это треугольник со сторонами 3, 4 и 5, причем совершенно не важно, в каких единицах длинны. Между сторонами 3 и 4 — ровно девяносто градусов. Проверим данное утверждение вышеприведенной формулой: a²+b²=c² = (3×3)+(4×4) = 9+16 = (5×5) = 25 — все сходится!
А теперь применим теорему на практике.
Проверка прямого угла
Начнем с самого простого — проверки прямого угла с помощью теоремы Пифагора. Самым частым примером в отделке и строительстве является проверка перпендикулярности стен. Перпендикулярные стены — это стены, расположенные друг к другу под прямым углом 90°.
Итак, берем любой проверяемый внутренний угол. На стенах (на одной высоте) или на полу отмечаем на обоих стенах отрезки произвольных длин. Длинна этих отрезков произвольная, по возможности нужно отмечать как можно больше, но чтобы между отметками на стенах удобно было мерить диагональ. Например, мы отметили 2,5 метра (или 250 см.) на одной стене и 3 метра (или 300 см.) на другой. Теперь длину отрезка каждой стены возводим в квадрат (умножаем саму на себя) и получившиеся произведения складываем. Выглядит это так: (2,5×2,5)+(3×3)=15,25 — это диагональ в квадрате. Теперь нужно извлечь из этого числа квадратный корень √15,25≈3,90 — 3,9 метра должна составлять диагональ между нашими отметками. Если измерение рулеткой показывает другую длину диагонали — проверяемый угол развернут и имеет отклонение от 90°.
Калькулятор расчета диагонали прямого угла
Извлечение квадратного корня никогда меня не привлекало — простому человеку не обойтись без калькулятора, к тому же, не на всех мобильных устройствах калькуляторы умеют извлекать его. Поэтому можно пользоваться упрощенным методом. Нужно лишь запомнить:
Сразу же возникает вопрос: какое отклонение от вычисленной длинны диагонали считать нормой (погрешностью), а какое нет? Если проверяемый угол с отмеченными сторонами по 1 м. будет 89°, то диагональ уменьшится до 140 см. Из понимания этой зависимости можно сделать объективный вывод, что погрешность диагонали 141,4 см. в несколько миллиметров не даст отклонения в один целый градус.
Как проверить внешний угол? Проверка внешнего угла по сути не отличается, нужно лишь продлить линии каждой стены на полу (или земле, при помощи шнура) и получившийся внутренний угол измерить обычным способом.
Как разметить прямой угол рулеткой
Разметка может основываться как на общей теореме Пифагора, так и на принципе «египетского треугольника». Однако это только в теории линии просто чертятся на бумаге, «ловить» же все выбранные размеры растянутыми шнурами или линиями на полу — задача посложнее.
Поэтому я предлагаю упрощенный способ, основанный на диагонали 141,4 см. у треугольника со сторонами 100 см. Вся последовательность разметки изображена на картинках ниже. Важно не забывать: диагональ 141,4 см. нужно умножать на количество метров в отрезке А-Б. Отрезки А-Б и А-В должны быть равны и соответствовать целому числу в метрах. Картинки увеличиваются по клику!
Как разметить острый угол
Гораздо реже возникает надобность в создании острых углов, в частности 45°. Для формирования подобных фигур формулы более сложные, однако это не самое проблематичное. Гораздо сложнее свести все линии, начерченные или натянутые шнурами — дело это непростое. Поэтому я предлагаю использовать упрощенный метод. Сначала размечается прямой угол 90°, а затем диагональ 141,4 делится на нужное количество равных частей. Например, чтобы получить 45°, диагональ нужно поделить пополам и от точки А провести линию через место деления. Таким образом мы получим два угла по 45 градусов. Если поделить диагональ на 3 части, то получится три угла по 30 градусов. Думаю алгоритм вам понятен.
Собственно я рассказал все, что мог рассказать, надеюсь все изложил понятным языком и у вас больше не возникнет вопросов как размечать и проверять прямые углы. Стоит добавить, что уметь делать это должен любой отделочник или строитель, ведь полагаться на строительный угольник небольшого размера — непрофессионально.
Измерить угол – значит найти его величину. Величина угла показывает, сколько раз угол, выбранный за единицу измерения, укладывается в данном углу.
Обычно за единицу измерения углов принимают градус.
Измерение углов транспортиром
Для измерения углов используют специальный прибор – транспортир:
У транспортира две шкалы – внутренняя и внешняя. Начало отсчёта у внутренней и у внешней шкал располагается с разных сторон. Чтобы получить правильный результат измерения, отсчёт градусов должен начинаться с правильной стороны.
Измерение углов производится следующим образом: транспортир накладывают на угол так, чтобы вершина угла совпала с центром транспортира, а одна из сторон угла прошла через нулевое деление на шкале. Тогда другая сторона угла укажет величину угла в градусах:
Говорят: угол BOC равен 60 градусов, угол MON равен 120 градусов и пишут: ∠BOC = 60°, ∠MON = 120°.
Для более точного измерения углов используют доли градуса: минуты и секунды. Минута – это угол, равный части градуса. Секунда
Свойства измерения углов
Если луч делит данный угол на две части (на два угла), то величина данного угла равна сумме величин двух полученных углов.
Рассмотрим угол AOB:
Луч OD делит его на два угла: ∠AOD и ∠DOB. Таким образом, ∠AOB = ∠AOD + ∠DOB.
Развёрнутый угол равен 180°.
Любой угол имеет определённую величину, большую нуля.
Научно-исследовательская работа «Измеряем углы без транспортира»
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА с. РУССКИЙ КАМЕШКИР
(МБОУ СОШ с. Русский Камешкир)
Измерение углов без транспортира
Исследовательско — практическая работа
Работу выполнила ученица 6 Б класса
Прасулова Кристина
Научный руководитель: Скосырева Лилия Васильевна
Предмет: математика
2019 г
Содержание
1. Введение
2. Цели и задачи
3. Обзор литературы по данной теме
4. Методика работы
5. Описание работы
6. Выводы
7. Используемые ресурсы
8. Приложения
Объект исследования:
углы с различными градусными мерами; инструменты для измерения углов.
Предмет исследования:
процесс измерения углов без использования транспортира.
Гипотеза:
можно предположить, что существуют углы разных градусных мер, которые
можно измерить без применения транспортира, а только пользуясь линейкой без мерных делений, клетчатой бумагой и другими подручными материалами
Методы исследования:
— поисковый метод с использованием научной и учебной литературы, а также поиск необходимой информации в сети Интернет;
— графическое моделирование, анализ и классификация полученных результатов.
Целью работы:
является знакомство с инструментами для измерения углов, исследование метода измерения углов заданной градусной меры без использования транспортира.
Задачи:
1. Провести практическую работу по построению острых углов заданной градусной меры (от 10° до 80°, кратных 10) и выявлению «контрольных» точек – узлов для лучей каждого угла.
2. Проанализировать полученные результаты и систематизировать их
3. Определить группы задач, которые можно решить с помощью исследованного метода построения углов.
4. Сделать вывод о подтверждении или опровержении выдвинутой гипотезы.
Актуальность:
в курсе геометрии при решении задач часто приходится строить иллюстративные чертежи различных фигур по заданному условию. Владение методом построения углов на клетчатой бумаге позволяет чертить заданные углы с достаточной точностью, не требует наличия транспортира и экономит время на выполнение чертежа.
Содержание:
Введение.
2. Построение углов: история и современность.
3. Практическая часть. Построение углов без помощи транспортира.
1) Построение угла 45° без помощи транспортира.
2) Построение острых углов с градусной мерой, кратной 10° без помощи транспортира.
3) Построение тупых углов с градусной мерой, кратной 10°, от 100° до 170°
без помощи транспортира.
4) Построение углов с помощью угольников.
5) Построение углов 30°, 45°, 60°, 90° в практической жизни.
6) Измерение углов по пальцам рук.
4. Выводы и заключение.
5. Литература.
1.ВВЕДЕНИЕ
Увлечение отдельной областью математики часто начинается с размышления над какой-то особенно понравившейся задачей. При изучении в 5 классе на уроках математики темы «Построение угла заданной величины», мы научились строить углы с помощью транспортира.
И сразу обнаружили, что некоторые углы гораздо быстрее и более точно можно начертить в тетрадке с помощью одной только линейки.
Углы с градусными мерами 90° и 180° можно построить, проведя луч по горизонтальным или вертикальным линиям тетради, а углы в 135° и 45° — по диагоналям клеток.
Именно тогда я и заинтересовалась вопросом, а можно ли построить и другие углы, используя только клетчатую бумагу и линейку?
Так появилась моя исследовательская работа «Строим углов без транспортира».
Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на листке бумаги, расчерченном на одинаковые квадратики?
Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны.
Своё исследование я решила начать с изучения ответа на вопрос, как решались задачи на построение углов, начиная с древних времен и до сегодняшнего времени.
2. ПОСТРОЕНИЕ УГЛОВ: ИСТОРИЯ И СОВРЕМЕННОСТЬ
Понятие градуса и появление первых инструментов для измерения углов связывают с развитием цивилизации в древнем Вавилоне, хотя само слово градус имеет латинское происхождение (градус–от лат. gradus- “шаг, ступень”). Градус получится, если, разделить окружность на 360 частей.
Возникает вопрос – а почему древние вавилоняне делили именно на 360 частей.
Дело в то, что в Вавилоне была принята шестидесятиричная система счисления. Более того, число 60 считалось священным. Поэтому все вычисления были связаны с числом 60.
История не сохранила имя ученого, который изобрел транспортир – возможно в древности этот инструмент имел совсем другое название.
Современное название происходит от французского слова ”ТRANSPORTER”, что означает “переносить”.
Первые задачи на построение углов возникли в глубокой древности. Возникли они из хозяйственных потребностей человека. Уже древними архитекторами и землемерами приходилось решать простейшие задачи на построение, связанные с их профессией.
Первые греческие ученые, которые занимались решением геометрических задач на
построение, были: Фалес Милетский (624 – 547 гг. до н.э.), Пифагор (ок. 580 – 500 гг. до н.э.), Платон (427 – 347 гг. до н.э.).
Самые первые задачи на построение, по-видимому, решались непосредственно на
местности и заключались в проведении прямых линий и построения прямого угла.
К задачам на построение прибегали древние инженеры, когда составляли рабочий чертеж того или иного сооружения и решали вопросы, связанные с отысканием красивых геометрических форм сооружения и его наибольшей вместимости.
Задачи на построение помогали людям в их хозяйственной жизни, их решения формулировались в виде ‘практических правил», исходя из наглядных соображений.
Именно эти задачи и были основой возникновения наглядной геометрии, нашедшей довольно широкое развитие у древних народов Египта, Вавилона, Индии и др.
Платон и его ученики считали построение геометрическим, если оно выполнилось при помощи циркуля и линейки, то есть путем проведения окружностей и прямых линий. Если же в процессе построения использовались другие чертежные инструменты, например транспортир, то построение не считалось геометрическим.
Древние греки вслед за Платоном стремились к геометрическим построениям и считали их идеалом в геометрии.
Но древние ученые производили измерения не только транспортиром – ведь этот
инструмент был неудобен для измерений на местности и решения задач прикладного
характера. А именно прикладные задачи и являлись главным предметом интереса древних геометров.
Изобретение первого инструмента, позволяющего измерять углы на местности,
связывают с именем древнегреческого ученого Герона Александрийского (I в. до н.э). Он описал инструмент “диоптр”, позволяющий измерять углы на местности и решать множество прикладных задач.
Но прогресс не стоит на месте и в ХVII веке был изобретен прибор нивелир, а в следующем веке английским механиком Джессе Рамсденом был изобретен другой прибор – теодолит.
теодолит
Сегодня теодолит – сложный прибор. Многие работы (в том числе и строительство) требуют предварительной консультации геодезистов измерений с помощью теодолита.
Однако усовершенствование инструментов для измерения углов связано не только с
проведением строительных работ. С древнейших времен люди путешествовали, познавая окружающий мир. Путешественниками необходимо было уметь ориентироваться в пространстве. На долгие века основным ориентиром путешественников стали звезды.
Появился первый инструмент путешественников – астролябия. Астролябия(греч. astrolabion, от astron — «звезда» и labe – “схватывание»; лат. astrolabium) — угломерный прибор, служивший до начала XVIII в. для определения положений светил на небе.
Секстант — это наиболее совершенный прибор для измерения угловых координат небесных тел того времени. Его изобретение приписывается Исааку Ньютону. Секстант позволял измерять как широту, так и долготу точки наблюдения, причем с довольно высокой точностью.
В настоящее время широко используются современные приборы для измерения углов на местности.
Геодезический инструмент для измерения углов при съёмках на местности, специальный вид компаса- буссоль.
Простейший геодезический инструмент, служащий для измерения углов наклона местности с точностью до десятых долей градуса- эклиметр.
Первый в мире транспортирНеобычный объект, который мы можем наблюдать на фото, был найден в гробнице древнеегипетского архитектора Ха (Kha). Без малого столетие прошло с тех пор, как историки впервые задались вопросом о предназначении странного артефакта.
Недавно предположение о возможном способе использования объекта выдвинула ученая-физик. Гипотеза, предложенная Амелией Спаравигной (Amelia Sparavigna) из Туринского политехнического университета (Turin Polytechnic), базируется на числовых отметках, якобы присутствующих на поверхности артефакта.
Архитектор Ха известен тем, что во времена 18-той династии (приблизительно 1400 год до нашей эры) он был задействован в строительстве гробницы фараона. Собственную же усыпальницу Ха нашли 1906 году неподалеку от Долины Царей — это открытие принадлежит археологу Эрнесто Скьяпарелли (Ernesto Schiaparelli). Среди вещей, когда-то принадлежащих архитектору, удалось идентифицировать измерительные пруты длиной в локоть (45 см), инструмент, напоминающий современный угольник, а также неизвестное полое деревянное орудие. По мнению Скьяпарелли, это был инструмент для выставления уровня.
Детально осмотрев старую находку, Амелия Спаравигна пришла к выводу, что на самом деле этот последний объект служил в качестве транспортира — в пользу такой версии свидетельствуют 16 лепестков, расположенных по окружности и находящихся на равном расстоянии друг от друга. Эти лепестки окружены круглым узором, имеющим 36 углов. Очевидно, продолговатая ровная часть инструмента устанавливалась на поверхность, после чего, с помощью уровня, можно было определить угол наклона того или иного объекта.
Числа, присутствующие на находке, якобы соответствовали двум измерительным системам, применявшимся в древнем Египте. Первая, внутренняя часть узора, соответствует шестнадцатичной счетной системе (соответствует современной десятичной). Вторая отображает 36 созвездий, известных египтянам.
Современные угломеры
Транспорти́р (фр. transporteur, от лат. transporto «переношу») — инструмент для построения и измерения углов. Транспортир состоит из линейки (прямолинейной шкалы) и полукруга (угломерной шкалы), разделённого на градусы от 0 до 180°. В некоторых моделях — от 0 до 360°.
Разновидности транспортиров
Полукруговые (180 градусов) — наиболее простые и древние транспортиры.
Круговые (360 градусов).
Геодезические, которые бывают двух типов: ТГ-А — для построения и измерения углов на планах и картах; ТГ-Б — для нанесения точек на чертежной основе по известным углам и расстояниям. Цена деления угломерной шкалы — 0,5°, прямолинейной — 1 миллиметр.
Улучшенные типы транспортиров, которые необходимы для более точных построений и измерений. Например, существуют специальные транспортиры с прозрачной линейкой с угломерным нониусом, которая вращается вокруг центра.
Транспортиры изготавливаются из стали, пластмассы, дерева и других материалов. Точность транспортира прямо пропорциональна его размеру (чем больше транспортир, тем меньше цена одного деления).
Полукруговой транспортир Круговой транспортир Геодезический транспортир
Угломер электронный Угломер строительный
Изобретение Леонида Чижевского — командирский угломерУгломер Чижевского представлял собой треногу, на которой крепился круг с делениями, на его оси — подвижная алидада с указателем и визирная трубка на ней. Был еще и компас для ориентирования прибора. Измерив угловые расстояния между своей батареей и целью, командир производит геометрические расчеты и передает необходимые данные по телефону или через связных на свою батарею. Используя их, обученные наводчики направляют орудия на цель. Во время стрельбы командир батареи с помощью бинокля корректирует точность попадания снарядов в цель. Новый способ стрельбы с закрытых позиций давал возможность нанести удар по врагу не одним выстрелом из одного орудия, а со всех орудий разом широким фронтом огня – веером, сохранив при этом людей и технику.
Вот такая история возникновения различных приборов для измерения углов не только на чертежах, но и на любой местности, включая даже небесное пространство!
Таким образом, я выяснила, что на современном этапе существует множество приборов, позволяющих измерять и строить углы с различной степенью точности, которые применяются людьми самых разнообразных профессий, а при изучении курса геометрии в школе для построения углов заданной градусной меры в основном используется циркуль, линейка и транспортир.
3.ПРАКТИЧЕСКАЯ ЧАСТЬ.
1)Построение угла 45° без помощи транспортира.
Угол 45 градусов в геометрии встречается часто.
Рассмотрим, как легко можно построить угол 45 градусов без транспортира, пользуясь только линейкой, карандашом и клеточками тетради.
Легче всего строить прямой угол.
Для этого из одной точки по клеточкам строим горизонтальный и вертикальный лучи.
Градусная мера прямого угла — 90 градусов. 45 градусов — половина от 90º. Значит, чтобы построить угол 45 градусов, нужно взять половину прямого угла.
Сделать это очень легко. Выбираем вершину угла на пересечении клеточек. Одну сторону угла, например, горизонтальный луч, проводим с помощью линейки по клеточкам. Для построения второй стороны угла 45º каждую клеточку делим по диагонали (отмечаем несколько точек):
Затем с помощью линейки и карандаша через эти точки проводим второй луч. Получили угол 45 градусов:
2)Построение острых углов с градусной мерой, кратной 10° без помощи транспортира.
Для проведения исследования я на листке клетчатой бумаги построила острые углы,
начиная от 10° до 80°, с интервалом в 10°. Центр угла был расположен в узле клеток. Один из лучей, образующих угол, провела горизонтально слева направо.
Далее с помощью транспортира начертила лучи для всех исследуемых углов.
Если второй луч проходил точно через узел клеток, то информацию об этом угле заносила в таблицу.
Положение «контрольного» узла относительно вершины данного угла отмечалось следующим образом: сначала указывалось количество целых клеток вверх, затем вправо.
В результате получилась такая таблица:
Проанализировав данные таблицы для построения углов, можно заметить, что для углов
от 20° до 70° количество клеток вверх на единицу превышает количество десятков в
градусной мере угла. Причем сумма клеток вверх и вправо для всех этих углов равна 11.
Величина острого угла | Количество клеток вверх от вершины угла | Количество клеток вправо от вершины угла |
10° | 1 | 6 |
20° | 3 | 8 |
30° | 4 | 7 |
40° | 5 | 6 |
50° | 6 | 5 |
60° | 7 | 4 |
70° | 8 | 3 |
80° | 6 | 1 |
То есть, чтобы знать все «контрольные» узлы, полученные в таблице достаточно
запомнить только точку для угла в 10° –(1;6), и для угла 80°- ей служит противоположная(6;1).
А все остальные «контрольные» точки лучей (для углов от 20° до 70°, кратных 10)
подчиняются несложному правилу: «Если прибавить к числу десятков искомого угла единицу, то получим количество клеток по вертикали. Если это число отнять от 11, то получим количество клеток по горизонтали от вершины угла.»
Например, для построения угла в 70° нужно отступить 8 (7+1) клеток по вертикали и 3(11-8) клетки по горизонтали в сторону первого луча.
Анализ данных в полученной таблице еще раз убеждает нас в существовании красоты, закона симметрии и порядка в науке математике.
3)Построение тупых углов с градусной мерой, кратной 10°, от 100° до 170° без помощи транспортира.
Исследованный метод построения углов позволяет решать следующую геометрическую задачу: построение тупых углов от 100° до 170° с шагом в 10°.
Смежные углы имеют общий луч. Поэтому для построения тупых углов можно
пользоваться «контрольной» точкой смежного ему острого угла из таблицы. Только
отсчет клеток по горизонтали выбирается в противоположном горизонтальному лучу
направлении (в нашем случае влево).
4)Построение углов с помощью угольников.
Я исследовала чертёжные инструменты – угольники.
Угольник — линейка в форме прямоугольного треугольника, как правило, с миллиметровой шкалой и с пустотой в форме уменьшенного подобного треугольника внутри.
Наиболее распространены угольники двух видов: с острыми углами по 30 и 60 градусов и равнобедренными с одинаковыми острыми углами по 45 градусов. Угольники используются в черчении для построения некоторых углов без помощи транспортира.
При использовании двух угольников можно построить больший набор углов, прикладывая их друг к другу, например, угол в 75 градусов (30+45), 120 градусов (90+30) и т.д. Покажу, как это сделать…
Понадобятся два вида угольников: первый с углами по 45 градусов, а второй — по 30 и 60.
1)75 градусов можно построить следующим образом: сначала построить угол в 30, а затем от него отложить 45 градусов.
2) 135 градусов: построить прямой угол, затем от него отложить 45 градусов.
3) 25 градусов: построить угол в 60 градусов, затем от луча внутри угла отложить 45 градусов.
С помощью угольников можно построить углы 105◦, 15◦ и другие.
105= 60+45, 15=60-45 и так далее.
5)Построение углов 30°, 45°, 60°, 90° в практической жизни.
Часто домашнему мастеру необходимо срочно произвести какое либо измерение или сделать разметку под определенным углом, а под рукой нет либо угольника, либо транспортира. В этом случае его выручат несколько простых правил.
Угол 90 градусов.
Если нужно срочно построить прямой угол, а угольника нет, можно воспользоваться любым печатным изданием. Угол бумажного листа — очень точный прямой угол (90 град.). Резательные (вырубочные) машины в типографиях настроены очень точно. Иначе исходный рулон бумаги начнет резаться вкривь и вкось. Поэтому вы можете быть уверены, что этот угол — именно прямой.
А если нет даже печатного издания или необходимо построить угол на местности, например при разметке фундамента или листа фанеры с неровными краями? В этом случае нам поможет правило золотого (или египетского) треугольника.
Золотым (или египетским, или Пифагоровым) треугольником называется треугольник со сторонами, которые соотносятся друг с другом как 5:4:3. По теореме Пифагора, у прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Т.е. 5х5 = 4х4 + 3х3. 25=16+9 и это неоспоримо.
Поэтому для построения прямого угла достаточно на заготовке провести прямую линию длиной 5 (10,15,20 и т.д. кратной 5 см). А затем, из краев этой линии начать отмерять с одной стороны 4 (8,12,16 и т.д кратно 4 см), а с другой — 3 (6,9,12,15 и т.д. кратно 3 см) расстояния. Должны получиться дуги с радиусом 4 и 3 см. Где эти дуги пересекутся между собой и будет прямой (90 градусов) угол.
Угол 45 градусов.
Такие углы обычно применяют при изготовлении прямоугольных рамок. Материал из которого делается рамка (багет) пилится под углом 45 градусов и стыкуется. Если под рукой нет стусла или транспортира, получить шаблон угла в 45 градусов можно следующим образом. Необходимо взять лист писчей бумаги или любого печатного издания и согнуть его так, что бы линия сгиба проходила точно через угол, а края загнутого листа совпадали. Получившийся угол и будет равен 45 градусам.
Угол 30 и 60 градусов.
Угол в 60 градусов требуется для построения равносторонних треугольников. Например, вам надо напилить такие треугольники для декоративных работ или точно установить силовой укос. Угол в 30 градусов редко применяется в чистом виде. Однако с его помощью (и с помощью угла в 90 градусов) строится угол 120 градусов. А это угол, необходимый для построения равносторонних шестиугольников, фигуры весьма популярной у столяров.
Для построения весьма точного шаблона этих углов в любой момент необходимо запомнить константу (число) 173. Они вытекает из соотношений синусов и косинусов этих углов.
Возьмите лист бумаги из любого печатного издания. Его угол равен точно 90 градусам. От угла по одной стороне отмерьте 100 мм (10 см.), а по другой — 173 мм (17,3 см). Соедините эти точки. Таким образом мы и получили шаблон, у которого один угол 90 градусов, один 30 градусов и один 60 градусов. Можете проверить на транспортире — все точно!
Запомните это число — 173, и вы всегда сможете построить углы в 30 и 60 градусов.
6)Измерение углов по пальцам рук.
Итак, смотрим на свою руку, которая есть у каждого человека. Уточнение! — левша должен снимать показания углов с правой руки, а правша с левой. Причина проста — приоритет действующей руки со временем деформирует кости, суставы и сильнее растягивает мышцы. Поэтому у правшей левая рука менее деформирована и разработана, а у левшей наоборот.
Теперь растопыриваем в стороны пальцы, как только можете за счет усилия только руки, ничем их раздвигать не нужно — только максимальное мышечное усилие. Богом так заложено у человека и это правда, что у здорового человека с нормальной рукой растопыренные пальцы — это полноценно действующий и относительно точный транспортир.
Угол между большим и безымянным пальцами равен 90 гр.
Угол между большим и указательным пальцами равен 45 гр.
Угол между безымянным и средним пальцами равен 22.5 гр.
Угол между безымянным и мизинцем равен 15 гр. — солнечному часу.
4.ВЫВОДЫ И ЗАКЛЮЧЕНИЕ.
Своей исследовательской работой мне хотелось бы доказать, что построение углов очень интересное и познавательное занятие, совсем не сложное и трудоемкое, как может показаться на первый взгляд.
Поработав с материалом и подготовив его к применению на практике, я сделала
следующие выводы:
1. Обычный лист бумаги в клетку может выполнять функцию своеобразного инструмента для построения углов.
2. Угольники можно использовать для построения некоторых углов без использования транспортира.
Таким образом, методы построения углов без помощи транспортира актуальны для школьников, так как большинство задач оформляется на листке тетради в клетку и большинство задач в учебнике геометрии связано с построением фигур с углами, градусная мера которых кратна10°.
5 ЛИТЕРАТУРА.
1. В.В. Вавилов, А.В. Устинов. Задачи на клетчатой бумаге. – М.: Школа им. А.Н.
Колмогорова, 2006. – 183 с
2. Ганьшин В.Н. Простейшие измерения на местности. 3-е изд., перераб. и доп., М.,
Недра, 1983, 108 с., ил.
3.Смирнов В.А, Смирнова И.М. Геометрия на клетчатой бумаге. М., МЦНМО, 2009
4. Большая советская энциклопедия
5. ГОСТ 13494-80. Транспортиры геодезические. Технические условия (с Изменениями N 1-4).
6. Большой энциклопедический политехнический словарь 2004
Список интернет-ресурсов:
http://allencyclopedia.ru/17254 Большая Советская энциклопедия/ Геодезические
инструменты
http://journal.kuzspa.ru/articles/95/ -Электронный научный журнал «Информационно-
коммуникационные технологии в педагогическом образовании»
http://sm-shihova.ucoz.ru/Komu_interesno/Komuinteresno_6.pdf — Математика, 5-6: книга для учителя Автор/создатель: Суворова С.Б., Кузнецова Л.В., Минаева С.С., Рослова Л.О.
http://enc-dic.com/word/t/Transportir-4655.html [энциклопедии и словари]
http://www.gs-market.ru/index.php?show_aux_page=70 [угломеры электронный, строительный]
http://znaika.ru/catalog/5-klass/matematika/Izmerenie-uglov.-Transportir. [история возникновения приборов измерения углов]
http://virtoo.ru/almanach/nepoznannoe/pervyj-v-mire-transportir-izobreli-eg.html [первый в мире транспортир изобрели египтяне]
http://www.vest-news.ru/article.php?id=18508 [угломер Чижевского Л.В.]
http://astro.uni-altai.ru/picture/src/0+1066279852/ [средневековые угломерные инструменты]
.
Измерение углов. Транспортир
Измерить угол – значит найти его величину. Величина угла показывает, сколько раз угол, выбранный за единицу измерения, укладывается в данном углу.
Обычно за единицу измерения углов принимают градус. Градус – это угол, равный части развёрнутого угла. Для обозначения градусов в тексте, используется знак °, который ставится в правом верхнем углу числа, показывающего количество градусов (например, 60°).
Измерение углов транспортиром
Для измерения углов используют специальный прибор – транспортир:
У транспортира две шкалы – внутренняя и внешняя. Начало отсчёта у внутренней и у внешней шкал располагается с разных сторон. Чтобы получить правильный результат измерения, отсчёт градусов должен начинаться с правильной стороны.
Измерение углов производится следующим образом: транспортир накладывают на угол так, чтобы вершина угла совпала с центром транспортира, а одна из сторон угла прошла через нулевое деление на шкале. Тогда другая сторона угла укажет величину угла в градусах:
Говорят: угол BOC равен 60 градусов, угол MON равен 120 градусов
и пишут: ∠BOC = 60°, ∠MON = 120°.
Для более точного измерения углов используют доли градуса: минуты и секунды. Минута – это угол, равный части градуса. Секунда – это угол, равный части минуты. Минуты обозначают знаком ‘, a секунды – знаком ». Знак минут и секунд ставится в правом верхнем углу числа. Например, если угол имеет величину 50 градусов 34 минуты и 19 секунд, то пишут:
50°34‘19»
Свойства измерения углов
Если луч делит данный угол на две части (на два угла), то величина данного угла равна сумме величин двух полученных углов.
Рассмотрим угол AOB:
Луч OD делит его на два угла: ∠AOD и ∠DOB. Таким образом, ∠AOB = ∠AOD + ∠DOB.
Развёрнутый угол равен 180°.
Любой угол имеет определённую величину, большую нуля.
как построить угол без транспортира
Это ровно четвертинка от 90 градусов. Угол 90 град строится элементарно — как перпендикуляр к прямой. После чего остаётся дважды разделить его пополам. Для чего циркуль ставится в вершину угла, делаются засечки на двух сторонах угла, а потом тем же циркулем из этих засечек проводятся пересекающиеся дуги. Линия от точки их пересечения до вершину угла и есть биссектриса.
построй прямую, потом перпендикуляр к ней, потом подели угол в 90 на два, потом угол в 45 еще на два
циркулем поищи в нете как, а то много писать и надо рисовать. посмотри <a rel=»nofollow» href=»http://otvet.mail.ru/question/24858168/» target=»_blank» >здесь</a> как я понимаю тебе дали картинку? тогда тебе <a rel=»nofollow» href=»http://moodle.nci.kz/mod/resource/view.php?id=786″ target=»_blank» >сюда</a>
Нужно: Бумага, карандаш, линейка, циркуль, калькулятор Начертите одну из сторон угла. Для этого сначала поставьте точку, которая должна быть его вершиной, и обозначьте буквой А. Проведите начинающуюся от нее линию — сторону угла. 2 Постройте вспомогательный перпендикуляр к проведенной стороне. На бумаге в клеточку это сделать несложно, а для нелинованной бумаги и при отсутствии угольника можно воспользоваться циркулем. Этот метод удобен и для случаев, когда на бумаге в клеточку сторона угла расположена наклонно. Начертите два пересекающихся круга, центры которых лежат на стороне угла. Проведите прямую через точки пересечения окружностей — это и будет перпендикуляр. Точку его пересечения со стороной угла обозначьте буквой В. 3 Измерьте длину отрезка АВ. Полученное число будет участвовать в расчетах, поэтому желательно построить перпендикуляр на таком расстоянии от точки А, чтобы число было круглым — это упростит вычисления. 4 Отложите на перпендикуляре расстояние, которое равно произведению полученного на предыдущем шаге числа на тангенс нужного угла. Для вычисления тангенса воспользуйтесь таблицами тригонометрических функций или калькулятором — например, встроенным в операционную системы программным калькулятором. Скажем, если длина отрезка АВ равна 20 см, а начертить нужно угол в 55°, то на перпендикуляре надо отложить 20*tg(55°)≈20*tg(55°)≈20*1,428=28,56 см. 5 Вместо тангенса можно использовать другую тригонометрическую функцию — например, если вы выберете косинус, длину отрезка АВ надо делить на косинус нужного угла. Но в этом случае вы получите длину второй стороны угла, а точку ее примыкания к перпендикуляру надо будет определять с помощью циркуля. Для примера из предыдущего шага вычисления в этом случае будут выглядеть так: 20/cos(55°)≈20/0,576≈34,72 см. Полученную величину отложите на циркуле, установите его в вершину угла и отметьте на перпендикуляре точку его пересечения с воображаемой окружностью отложенного радиуса. 6 Отмерив на перпендикуляре одним из описанных способов отрезок нужной длины, поставьте точку и обозначьте ее буквой С. Затем начертите вторую сторону угла — соедините его вершину (точку А) с точкой С. На этом построение угла ВАС будет завершено.
Как проверить прямой угол без угольника
При отделочных работах и строительстве бывает нужна четкая геометрия: перпендикулярные стены и иные конструкции, требующие прямого угла в 90 градусов. Обыкновенный угольник не может позволить проверить или разметить углы со сторонами в несколько метров. Описываемый же метод превосходно подходит для разметки или проверки любых углов — длинна сторон не ограничена. Основной инструмент для измерений — рулетка.
Мы будем рассматривать точную разметку прямого угла, а также метод проверки уже размеченных углов на стенах и других объектах.
Теорема Пифагора
Теорема основана на утверждении, что у прямоугольного треугольника сумма квадратов длин катетов равна квадрату длины гипотенузы. В виде формулы записывается это так:
a²+b²=c²
Стороны a и b — катеты, между которыми угол равен ровно 90 градусов. Следовательно, сторона c — гипотенуза. Подставляя в эту формулу две известные величины, мы можем вычислить третью, неизвестную. А следовательно можем размечать прямые углы, а также проверять их.
Теорема Пифагора известна еще под названием «египетский треугольник». Это треугольник со сторонами 3, 4 и 5, причем совершенно не важно, в каких единицах длинны. Между сторонами 3 и 4 — ровно девяносто градусов. Проверим данное утверждение вышеприведенной формулой: a²+b²=c² = (3×3)+(4×4) = 9+16 = (5×5) = 25 — все сходится!
А теперь применим теорему на практике.
Проверка прямого угла
Начнем с самого простого — проверки прямого угла с помощью теоремы Пифагора. Самым частым примером в отделке и строительстве является проверка перпендикулярности стен. Перпендикулярные стены — это стены, расположенные друг к другу под прямым углом 90°.
Итак, берем любой проверяемый внутренний угол. На стенах (на одной высоте) или на полу отмечаем на обоих стенах отрезки произвольных длин. Длинна этих отрезков произвольная, по возможности нужно отмечать как можно больше, но чтобы между отметками на стенах удобно было мерить диагональ. Например, мы отметили 2,5 метра (или 250 см.) на одной стене и 3 метра (или 300 см.) на другой. Теперь длину отрезка каждой стены возводим в квадрат (умножаем саму на себя) и получившиеся произведения складываем. Выглядит это так: (2,5×2,5)+(3×3)=15,25 — это диагональ в квадрате. Теперь нужно извлечь из этого числа квадратный корень √15,25≈3,90 — 3,9 метра должна составлять диагональ между нашими отметками. Если измерение рулеткой показывает другую длину диагонали — проверяемый угол развернут и имеет отклонение от 90°.
Калькулятор расчета диагонали прямого угла
Извлечение квадратного корня никогда меня не привлекало — простому человеку не обойтись без калькулятора, к тому же, не на всех мобильных устройствах калькуляторы умеют извлекать его. Поэтому можно пользоваться упрощенным методом. Нужно лишь запомнить: у прямого угла со сторонами ровно 100 сантиметров, диагональ равна 141,4 см. Таким образом, у прямого угла со сторонами 2 м. — диагональ равна 282,8 см. То есть на каждый метр плоскости приходится 141,4 см. У этого метода один недостаток: от измеряемого угла нужно откладывать одинаковые расстояния на обеих стенах и отрезки эти должны быть кратны метру. Не буду утверждать, но по моей скромной практике — это гораздо удобнее. Хотя не стоит забывать о первоначальном способе совсем — в некоторых случаях он очень актуален.
Сразу же возникает вопрос: какое отклонение от вычисленной длинны диагонали считать нормой (погрешностью), а какое нет? Если проверяемый угол с отмеченными сторонами по 1 м. будет 89°, то диагональ уменьшится до 140 см. Из понимания этой зависимости можно сделать объективный вывод, что погрешность диагонали 141,4 см. в несколько миллиметров не даст отклонения в один целый градус.
Как проверить внешний угол? Проверка внешнего угла по сути не отличается, нужно лишь продлить линии каждой стены на полу (или земле, при помощи шнура) и получившийся внутренний угол измерить обычным способом.
Как разметить прямой угол рулеткой
Разметка может основываться как на общей теореме Пифагора, так и на принципе «египетского треугольника». Однако это только в теории линии просто чертятся на бумаге, «ловить» же все выбранные размеры растянутыми шнурами или линиями на полу — задача посложнее.
Поэтому я предлагаю упрощенный способ, основанный на диагонали 141,4 см. у треугольника со сторонами 100 см. Вся последовательность разметки изображена на картинках ниже. Важно не забывать: диагональ 141,4 см. нужно умножать на количество метров в отрезке А-Б. Отрезки А-Б и А-В должны быть равны и соответствовать целому числу в метрах. Картинки увеличиваются по клику!
Как разметить острый угол
Гораздо реже возникает надобность в создании острых углов, в частности 45°. Для формирования подобных фигур формулы более сложные, однако это не самое проблематичное. Гораздо сложнее свести все линии, начерченные или натянутые шнурами — дело это непростое. Поэтому я предлагаю использовать упрощенный метод. Сначала размечается прямой угол 90°, а затем диагональ 141,4 делится на нужное количество равных частей. Например, чтобы получить 45°, диагональ нужно поделить пополам и от точки А провести линию через место деления. Таким образом мы получим два угла по 45 градусов. Если поделить диагональ на 3 части, то получится три угла по 30 градусов. Думаю алгоритм вам понятен.
Собственно я рассказал все, что мог рассказать, надеюсь все изложил понятным языком и у вас больше не возникнет вопросов как размечать и проверять прямые углы. Стоит добавить, что уметь делать это должен любой отделочник или строитель, ведь полагаться на строительный угольник небольшого размера — непрофессионально.
Оцените публикацию:Оценка: 4.4 (35 голосов)