Основные элементы растровой графики: Растровая графика — Википедия – Растровая графика — Компьютерная графика

Основным элементом растрового изображения является точка

Компьютерная графика. Основы коррекции тона

Виды компьютерной графики

  1. Растровая графика
  2. Векторная графика
  3. Фрактальная графика
  4. 3D графика

Виды компьютерной графики отличаются принципами формирования изображения

Растровая графика

· Применяется при разработке электронных и полиграфических изданий

· Большинство редакторов ориентированы не столько на создание изображений, сколько на их обработку

· В Интернете применяются только растровые иллюстрации

Основным элементом растрового изображения является точка

· Разрешение изображения выражает количество точек в единице длины (dpi – количество точек на дюйм)

· Если изображение экранное, то эта точка называется пикселем

Пиксел (пиксель) — (от англ. picture element – элемент картинки) – наименьший элемент растрового изображения.

В простейшем случае (черно-белое изображение без градаций серого цвета). Каждая точка экрана может иметь лишь два состояния – «черная» или «белая», т.е. для хранения ее состояния необходим 1 бит.

Цветные изображения могут иметь различную глубину цвета (бит на точку 4, 8, 16, 24). Каждый цвет можно рассматривать как возможные состояния точки, и тогда по формуле N=2ᵐ может быть вычислено количество цветов отображаемых на экране монитора.

Глубина цвета I Количество отображаемых цветов N

24=16
28=256
16 (High Color) 216=65 536
24 (True Color) 224=16 777 216

Изображение может иметь различный размер, которое определяется количеством точек по горизонтали и вертикали.

 

Растр -(от англ. raster) – представление изображения в виде двумерного массива точек (пикселов), упорядоченных в ряды и столбцы. В современных ПК обычно используются 4 основных размера изображения или разрешающих способностей экрана: 640х480, 800х600, 1024х768, 1280х1024 пикселя. Графический режим вывода изображения на экран определяется разрешающей способностью экрана и глубиной (интенсивностью) цвета.

Полная информация о всех точках изображения, хранящаяся в видеопамяти, называется битовой картой изображения.

Основные проблемы при работе с растровой графикой:

· Большие объемы данных. Для обработки растровых изображений требуются высокопроизводительные компьютеры

· Увеличение изображения приводит к эффекту пикселизации, иллюстрация искажается



Дата добавления: 2017-04-05; просмотров: 4616;


Похожие статьи:

1) Растровая графика, основные понятия

Все растровые изображения состоят из множества точек. Это наиболее простой способ представления изображения, потому что именно таким образом видит его наш глаз.

Процесс формирования растрового изображения можно сравнить с мозаичным панно, где с помощью одинаковых по форме, но различных по цвету элементов создаются различные образы. Если отойти от мозаичного панно достаточно далеко, отдельные элементы становятся неразличимо малы, и изображение кажется однородным. Точно так же кодируются и растровые изображения в компьютерной графике. Все изображение подобно таблице разбивается по горизонтали и вертикали на мелкие ячейки – точки, каждая из которых принимает усредненный по площади ячейки цвет. При работе с изображением в памяти компьютера запоминается вся таблица (именно поэтому растровые изображения всегда прямоугольные) и цвет каждой ее точки. Таким образом, в растровых изображениях не существует объектов как таковых.

Пиксель – неделимая точка в графическом изображении. Пиксель характеризуется прямоугольной формой и размерами, определяющими пространственное разрешение изображения.

Под растровым (bitmap, raster) понимают способ представления изображения в виде совокупности отдельных точек (пикселей) различных цветов или оттенков.

Рисунок 3. Пример Растрового изображения

Растровый способ кодирования изображений обеспечивает легкость их ввода с помощью сканеров. Светочувствительный элемент сканера измеряет оптическую плотность сканируемого оригинала (рисунка, фотографии, слайда) по всей его площади: в отдельных точках с заданным интервалом вдоль и поперек оригинала. В результате получается прямоугольная таблица, каждая ячейка которой соответствует измеренному значению цвета. Она представляется точным снимком оригинала в цифровой форме. Каждая ячейка таблицы называется точкой, а вся таблица –

растровым изображением.

Цифровое изображение, находящееся в памяти компьютера, не имеет своего физического воплощения, это всего лишь набор цифр. Увидеть его можно только посредством какого-либо устройства вывода. По этой причине внешний вид изображения (размер, качество, цветопередача и т.п.) сильно зависят от характеристик монитора или принтера.

Достоинством растрового способа представления изображений является возможность получения фотореалистичного изображения высокого качества в различном цветовом диапазоне.

+ Растровая графика позволяет создать (воспроизвести) практически любой рисунок, вне зависимости от сложности, в отличие, например, от векторной, где невозможно точно передать эффект перехода от одного цвета к другому без потерь в размере файла.

+ Распространённость — растровая графика используется сейчас практически везде: от маленьких значков до плакатов.

+ Высокая скорость обработки сложных изображений, если не нужно масштабирование.

+ Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы (за исключением векторных), матричные и струйные принтеры, цифровые фотоаппараты, сканеры.

Недостатком – то, что высокая точность и широкий цветовой диапазон требуют увеличения объема файла для хранения изображения и оперативной памяти для его обработки.

— Большой размер файлов с простыми изображениями.

— Невозможность идеального масштабирования.

— Невозможность вывода на печать на плоттер.

Растровая графика описывает изображения с использованием цветных точек, называемых пикселями, расположенных на сетке. При редактировании растровой графики редактируются пиксели, а не линии. Растровая графика зависит от разрешения, поскольку информация, описывающая изображение, прикреплена к сетке определенного размера. При редактировании растровой графики качество ее представления может измениться. В частности, изменение размеров растровой графики может привести к «разлохмачиванию» краев изображения, поскольку пиксели будут перераспределяться на сетке. Вывод растровой графики на устройства с более низким разрешением, чем разрешение самого изображения, понизит его качество.

Растровая и векторная графика

Здравствуйте дорогие читатели! В сегодняшней статье на фотодизарт.ру  мы поговорим о том, что такое растровая и векторная графика. Разберем, какие достоинства и недостатки присутствуют в каждом из графических форматов. Наверняка вам уже известно, что все компьютеры работают с графикой в двух графических форматах растровом (точечном) и векторном (объектном).

Растровое изображение представлено в памяти персонального компьютера, как комплекс информации о цвете всех пикселей, упорядоченных каким либо образом. Самым актуальным примером растровой графики в обыденном миру является мозаика. Мозаика состоит из одинаковых элементов разного цвета и в сборе представляет собой единое целое напоминая изображение их точек. В растровом изображение точки до того мелкие, что человеческий глаз их не видит, а видит изображение как единое целое.

Растровая графика — это графическое изображение на компьютере или в другом цифровом виде, состоящее из массива сетки пикселей, или точек различных цветов, которые имеют одинаковый размер и форму.

растровая графика

Схематическое изображение пикселей.

К наиболее популярным форматам  растровой графики можно отнести форматы: GIF, JPEG, PNG.

Векторная графика – это перечень всех объектов (линий, фигуры и т.д.) из которых состоит векторное изображение, каждому из объектов в изображение определено, к какому из классов объектов он относится и принадлежит, также приведены определенные параметры для управления объектом.

Аналоги векторным изображениям в реальном мире подобрать не просто. Хотя, например может претендовать геометрия со своими фигурами или же инженерная графика так, как в проектирование каких либо узлов оборудования создаются чертежи, которые состоят из различных геометрических фигур и в итоге составляют единое целое (изображение).

векторное изображение

Схематическое представление объектов, которые составляют изображение.

К самым популярным форматам векторной графики можно отнести: CDR, Ai, SVG.

Основные различия растровой и векторной графики

растровая и векторная графика

Достоинства растровой графики:

  • Растровая графика предоставляет возможность создавать любые изображения не обращая внимание на сложность их исполнения в отличие от векторной графики, которая неспособна предать хорошо переход цветов от одного к другому.
  • Широкий спектр применения – растровая графика на сегодняшний день нашла широкое применение в различных областях, от мелких изображений (иконок) до крупных (плакатов).
  • Очень высокая скорость обработки изображений различной сложности, при условие что нет необходимости в их масштабирование.
  • Представление растровой графики является естественным для большинства устройств и техники ввода-вывода графики.

Недостатки растровой графики:

  • Большой размер файлов с простыми растровыми изображениями.
  • Невозможно увеличение изображения в масштабе без потери качества.
  • Вывод изображения при печати на плоттер является затруднительным.
  • При хорошем качестве изображения требуются значительный объем дискового пространства для хранения файлов.
  • Сложность преобразования растрового изображения в векторное.

Исходя из вышеуказанных недостатков хранить простые рисунки рекомендуется не в сжатой растровой графике, а использовать векторную.

Достоинства векторной графики:

  • Масштабирование размеров без потери качества изображения.
  • Масштабированные изображения не увеличиваются в весе ни на один байт.
  • Во время масштабирования качество, резкость, четкость и цветовые оттенки изображений не страдают.
  • Вес изображения в векторном формате в разы меньше веса изображения в растровом формате.
  • При конвертации изображения из векторного формата в растровый, не возникает никакой сложности.
  • Толщина линий при изменение масштаба (увеличение или уменьшение) объектов может не изменяться.

Недостатки векторной графики:

  • В векторной графике можно изобразить далеко не каждый объект. Объем памяти и интервал времени на отображение векторной графики зависит от количества объектов и их сложности.
  • После преобразование из растрового изображения в векторное, обычно качество векторного изображения не высокое.

На сегодняшний день наиболее популярными и востребованными графическими редакторами являются:

Редактор растровой графики: Adobe Photoshop, GIMP.

Редакторы векторной графики: CorelDraw и Adobe Illustrator.

Векторная и растровая графика хранится в определенных форматах изображения.

Растровая и векторная графика — Блог Академии — HTML Academy

Давайте попробуем разобраться, в чём отличие растровой графики от векторной?

Растровая графика

Растровое изображение, как мозаика, складывается из множества маленьких ячеек — пикселей, где каждый пиксель содержит информацию о цвете. Определить растровое изображение можно увеличив его масштаб: на определённом этапе станет заметно множество маленьких квадратов — это и есть пиксели.

Наиболее распространённые растровые форматы: JPEG, PNG.

Растровое изображение и его увеличенный фрагмент

Применение

Растровая графика удобна для создания качественных фотореалистичных изображений, цифровых рисунков и фотографий. Самый популярный редактор растровой графики — Adobe Photoshop.

Пример использования растровой графики: цифровой рисунок (автор изображения: Катя Климович)Пример использования растровой графики: фотография

Преимущества

  • Возможность создать изображение любой сложности — с огромным количеством деталей и широкой цветовой гаммой.
  • Растровые изображения наиболее распространённые.
  • Работать с растровой графикой проще, так как механизмы её создания и редактирования более привычны и распространены.

Недостатки

  • Большой занимаемый объём памяти: чем больше «размер» изображения, тем больше в нём пикселей и, соответственно, тем больше места нужно для хранения/передачи такого изображения.
  • Невозможность масштабирования: растровое изображение невозможно масштабировать без потерь. При изменении размера оригинального изображения неизбежно (в результате процесса интерполяции) произойдёт потеря качества.

Векторная графика

В отличие от растровых, векторные изображения состоят уже не из пикселей, а из множества опорных точек и соединяющих их кривых. Векторное изображение описывается математическими формулами и, соответственно, не требует наличия информации о каждом пикселе. Сколько ни увеличивай масштаб векторного изображения, вы никогда не увидите пикселей.

Самые популярные векторные форматы: SVG, AI.

Векторное изображение и его увеличенный фрагмент

Применение

Векторная графика используется для иллюстраций, иконок, логотипов и технических чертежей, но сложна для воспроизведения фотореалистичных изображений. Самый популярный редактор векторной графики — Adobe Illustrator.

Пример использования векторной графики: социальные иконки (источник изображения: MacKenzie www.freevector.com/social-websites-icons)Пример использования векторной графики: иллюстрация (автор изображения: Катя Климович)

Преимущества

  • Малый объём занимаемой памяти — векторные изображения имеют меньший размер, так как содержат в себе малое количество информации.
  • Векторные изображения отлично масштабируются — можно бесконечно изменять размер изображения без потерь качества.

Недостатки

  • Чтобы отобразить векторное изображение требуется произвести ряд вычислений, соответственно, сложные изображения могут требовать повышенных вычислительных мощностей.
  • Не каждая графическая сцена может быть представлена в векторном виде: для сложного изображения с широкой цветовой гаммой может потребоваться огромное количество точек и кривых, что сведёт «на нет» все преимущества векторной графики.
  • Процесс создания и редактирования векторной графики отличается от привычной многим модели — для работы с вектором потребуются дополнительные знания.

Итог

Мы приходим к выводу, что не существует «серебряной пули»: и растровая, и векторная графика имеют свои достоинства и недостатки, соответственно, стоит выбирать формат, который подходит для решения поставленных перед вами задач.

Подробнее про форматы можно посмотреть в статье «Форматы изображений».

Растровая графика

Начнём знакомиться с растровой компьютерной графикой. Программный инструментарий ее наиболее развит и прост для усвоения. Способ выполнения изображения позволяет имитировать привычную работу с помощью графических инструментов, таких как карандаш, уголь, сангина, ластик, кисть и многих других, а также позволяет передать фактуру бумаги или холста, ткани или металла. С помощью средств растровой графики можно выполнять учебные и творческие задания по композиции и рисунку. Кроме того, широкие графические, цветовые и колористические возможности программного инструментария растровой графики позволяют легко изменять цветовые и тоновые отношения, что ценно для решения живописных задач.

Растровая графика – вам уже известно, что растровые изображения напоминают лист клетчатой бумаги или шахматную доску, на которой любая клетка закрашена определенным цветом, образуя в совокупности рисунок. Пиксель — основной элемент растровых изображений, это одна клеточка. Именно из совокупности пикселей и состоит растровое изображение.

Растровые изображения обладают множеством характеристик, которые должны быть фиксированы компьютером. Размеры изображения и расположение пикселей в нем — это две основные характеристики, которые файл растровых изображений должен сохранить, чтобы создать картинку. Еще одна – цвет. Например, изображение описывается конкретным расположением и цветом каждой точки сетки, что создает изображение примерно так как в мозаике.

Растровая графика зависит от разрешения, поскольку информация, описывающая изображение, прикреплена к сетке определенного размера. Разрешение — это количество пикселей на единицу длины, чаще всего на дюйм – dpi, причем, чем выше разрешение, тем больше пикселей помещается в дюйме и тем качественней изображение. Глубина цвета определяет то количество оттенков, в диапазоне которых точка может изменять свой цвет.

Глубина кодируется 24 bit на точку – это примерно 16 500 000 цветов. Этот режим называют «Настоящий цвет». Кодирование в 16 bit на точку позволяет различать 65 536 оттенков цвета. Этот режим получил название «Качественный цвет». Кодирование в 8 bit на точку позволяет различить всего 256 оттенков цвета. Этот режим известен как «Фиксированные цвета». Эти понятия непосредственно связаны со второй группой понятий «Цветовые форматы», о которых мы будем говорить на следующих уроках.

При редактировании растровой графики качество ее представления может измениться, ведь меняются сами пиксели. В частности, изменение размеров растровой графики может привести к «разлохмачиванию» краев изображения, поскольку пиксели будут перераспределяться на сетке. К сожалению, масштабирование таких картинок в любую сторону также обычно ухудшает качество. При уменьшении количества точек теряются мелкие детали и деформируются надписи (правда, это может быть не так заметно при уменьшении визуальных размеров самой картинки – т.е. сохранении разрешения).

Добавление пикселей приводит к ухудшению резкости и яркости изображения, т.к. новым точкам приходится давать оттенки, средние между двумя и более граничащими цветами. Вывод растровой графики на устройства с более низким разрешением, чем разрешение самого изображения, тоже понизит его качество. Несмотря на эти недостатки, только растровая графика эффектно представляет реальные образы. Реальный мир состоит из миллиардов мельчайших объектов, и человеческий глаз как раз приспособлен для восприятия огромного набора дискретных элементов, образующих предметы, поэтому растровые изображения выглядят реально, конечно, если они были получены с высоким разрешением.

Помимо естественного вида растровые изображения имеют другие преимущества. Устройства вывода, такие как принтеры, для создания изображений используют наборы точек, поэтому растровые изображения могут быть очень легко распечатаны.

Таким образом, растровое представление обычно используют при сканировании и обработке графических изображений с большим количеством деталей и оттенков, например, фотографий, при создании изображений для использования в других программах, в частности для передачи другим пользователям по сети Internet, при создании различных художественных эффектов, которые возможны благодаря специальным программным фильтрам. Самые известные программы растровой графики — Adobe Photoshop и Corel PHOTO-PAINT.

В каких случаях лучше использовать растровую графику?

Во-первых, как уже говорилось, способ выполнения изображений в этом виде графики позволяет имитировать привычную работу с помощью графических инструментов: карандаша, угля, сангины, ластика, кисти. В растровом изображении можно передать фактуру бумаги или холста, ткани или металла. Во-вторых, широкие графические, цветовые и колористические возможности растровой графики позволяют легко изменить цветовые или тоновые отношения изображения — обычно при сканировании и обработке графических изображений с большим количеством деталей и оттенков. Например, фотографий.

Заметим, что этот вид графики часто используют при создании изображений для других программ. Например, для передачи другим пользователям по сети Internet. В третьих, растровая графика незаменима при создании самых различных художественных эффектов, которые возможны только благодаря специальным программным фильтрам. Каждый объект растрового изображения находится в одном из слоев, имеющих прямоугольную форму. Слой можно представить в виде набора небольших квадратных ячеек, одинаковых по размеру, в которых можно сформировать некоторое изображение (растровый объект), состоящее из мозаичных элементов (пикселей).

Пиксель характеризуется не только цветом, но и прозрачностью при наложении элементов друг на друга. В случае, когда растровое изображение состоит из одного слоя, его можно сравнить с витражом, состоящим из небольших квадратных цветных стекол, или же с узором, вышитым крестиком. Растровые форматы файлов предназначены исключительно для сохранения растровых изображений. К числу наиболее популярных относятся следующие: BMP, PCX, TIFF, CPT, PSD, GIF и JPEG.

Форматы СРТ и PSD используют для сохранения многослойных изображений, а форматы GIF и JPEG применяют главным образом при работе в Internet, (они обеспечивают приемлемое качество изображений при небольших размерах файлов). В зависимости от того, какую обработку изображения планируется выполнить, может возникнуть потребность представления его в том или ином виде (растровом или векторном). Для преобразования растровых изображений в векторные и наоборот используются соответствующие функции программ векторной графики, а также специализированные программы трассировки Adobe Streamline 4.0, CorelTRACE 9. Операция трассировки заключается в формировании в автоматическом или ручном режиме векторного изображения, являющегося копией исходного растрового. Создаваемое изображение состоит из отдельных векторных объектов, раскрашенных определенными цветами и расположенных определенным образом друг относительно друга. Операция преобразования векторного изображения в растровое называется растрированием.

НОУ ИНТУИТ | Лекция | Типы компьютерной графики. Основные понятия растровой графики. Цветовые модели

Аннотация: Растровая и векторная графика. Разрешение изображений и глубина цвета. Различие разрешающих способностей различных устройств. Полиграфическая печать. Цветовые модели RGB, CMYK, HSB.

Цели занятия

  • познакомить учащихся с основными типами компьютерной графики
  • познакомить учащихся с понятиями разрешения изображения и глубины цвета
  • научить учащихся выбирать подходящее разрешение и глубину цвета в зависимости от целей создания изображения
  • дать сведения об основных цветовых моделях

Содержание занятия

Существует разделение на несколько типов компьютерной графики. Мы рассмотрим подробно два из них:

  • векторные изображения
  • растровые (или пиксельные, или битовые)


Векторная графикаРастровая графика
Рис. 1.1. Растровые и векторные графические изображения относятся к различным типам компьютерной графики

Векторные графические изображения создаются из объектов, которые описываются с помощью так называемых параметрических уравнений. Объекты состоят из контура и заливки (в частном случае — с отсутствующими (прозрачными)). Поскольку элементы таких изображений описываются формулами, векторные изображения не теряют качества при масштабировании и имеют небольшой объем файла.

Векторные изображения применяют при создании чертежей, графиков, схем, карт; с помощью векторной графики создаются открытки, обложки книг и журналов, даже рисуется мультипликация.

Такие изображения создаются в специальных программах — векторных редакторах, например Adobe Illustrator, Adobe Flash, Corel Draw, Autodesk Autocad и других. Поскольку векторные изображения описываются уравнениями, мы не можем увидеть их в «настоящем» виде.

Уравнения ничего не значат, если нельзя увидеть их результат, поэтому векторные изображения мы видим в виде растровых изображений на экране или на печатной странице (т. е. состоящими из мелких элементов — точек).

Создание векторных изображений можно сравнить со сборкой фигур из конструктора Lego или с созданием аппликаций.

Битовые графические изображения, называемые также растровыми, «обязаны своим существованием «мелким дискретным элементам, образующим распознаваемое изображение.


Рис. 1.2. Пример мозаики из камня

Ярким примером изображений из дискретных элементов является мозаика, возникшая как элемент украшения зданий (рис. 1.2. ). Для нее используются камни (смальта, плитки) самых разных форм и размеров. Художник-мозаист выбирает камень, исходя из требуемого цвета, размера и содержания. Творческая манера выкладывания мозаики у каждого художника своя.

В компьютерном изображении нет смысла выбирать особые элементы, а достаточно «навязать» принудительную дискретизацию на элементы простой геометрической формы — квадратной.

Ярким образцом растрового изображения является цифровая фотография.

Как и векторные, растровые изображения создаются и редактируются в программах — растровых редакторах, таких, как Adobe Photoshop, Corel Photopaint, Microsoft Paint и других.

Рассмотрим основные понятия пиксельной (растровой) графики подробнее.

Пиксел (pixel), являющийся сокращением от picture element (элемент картинки) — наименьший единый элемент растровой графики. (В живой речи слово употребляется в двух вариантах — «пиксел» и «пиксель». В литературе чаще встречается «пиксел».)

Пикселы чаще всего имеют квадратную форму (за исключением некоторых телевизионных стандартов). Размер пиксела является относительной величиной. Чтобы охарактеризовать место и размер пиксела в растровом изображении, применяют понятие разрешения изображения.

Для определения понятия разрешения необходимо выбрать единицу длины; чаще всего используют британскую — дюйм (inch), равный 2,54 cм. Можно рассматривать и метрическую систему, но эта система не прижилась среди специалистов, поэтому фактически не используется.

Число пикселов на единицу длины называется разрешением изображения (image resolution), и его количественной единицей считается ppi (pixels per inch — пикселы на дюйм).

Изображение с большим разрешением содержит больше пикселов (и меньшего размера), чем у изображения с меньшим разрешением (и большего размера).

Для лучшего усвоения понятия разрешения можно предложить учащимся небольшую задачу:

  • 5 клеточек в тетради по длине приблизительно равны одному дюйму; отметьте полоску из пяти клеток и закрасьте одну клеточку. Если размер пиксела будет размером с эту клеточку, какое будет разрешение у этого изображения? (5ppi)
  • Еще раз отметьте такую же полоску и закрасьте квадратик в четверть клеточки. Как изменилось разрешение? Каково оно? Как изменился размер пиксела? (10 ppi, разрешение изменилось в 2 раза, размер пиксела — в 4 раза)

Разрешение показывает, сколько пикселов содержится в одном линейном дюйме, и, если известны размеры изображения, можно точно сказать, сколько пикселов в нем содержится. Например, если изображение имеет размер 1 дюйм на 1 дюйм, а разрешение изображения равно 8 ppi, можно заключить, что все изображение содержит 64 пиксела. Если разрешение — 16 ppi, изображение этого же размера должно содержать 256 пикселов. При этом размер пиксела уменьшается в 4 раза.

Ни 8, ни 16 пикселов на дюйм не могут обеспечить качественное изображение. Такое разрешение слишком мало для человеческого зрения. На (рис. 1.3.) показаны линейка в один дюйм и согласование числа пикселов с разрешением изображения. Обратите внимание, что крайнее правое изображение было создано с разрешением 72 ppi — разрешением экранов мониторов — и выглядит прекрасно. Это наименьшее разрешение, при котором наш глаз различает «картинку» как единое целое, а не «набор квадратиков», при просмотре с расстояния «работы с книгой или компьютером».


8 ppi16 ppi72 ppi
Рис. 1.3. Разрешение растрового изображения выражено в количестве пикселов на дюйм (ррi)

Разрешающая способность изображения определяется пользователем, когда изображение оцифровывается с использованием сканера или цифрового фотоаппарата либо создается в программе обработки или редактирования изображений. Разберемся в практическом применении понятия разрешения при создании и редактировании растровой графики. Какое же разрешение изображения будет оптимальным?

Если задать этот вопрос учащимся, чаще всего они начинают перечислять все большие и большие значения, полагая, что чем меньше размер пиксела, тем лучше качество изображения.

Необходимо убедить учащихся в существовании физических ограничений на этот размер (ячейки монитора, точки на бумаге, возможностей нашего зрения).

Растровое изображение

История развития компьютерной графики

Отправной точкой развития компьютерной графики можно считать 1930 год, когда в США нашим соотечественником Владимиром Зворыкиным (рис.1.), работавшим в компании “Вестингхаус” (Westinghouse), была изобретена электронно-лучевая трубка (ЭЛТ), впервые позволяющая получать изображения на экране без использования механических движущихся частей.

Началом эры собственно компьютерной графики можно считать декабрь 1951 года, когда в Массачусеттском технологическом институте (МТИ) для системы противовоздушной обороны военно-морского флота США был разработан первый дисплей для компьютера “Вихрь” (рис.2). Изобретателем этого дисплея был инженер из МТИ Джей Форрестер.

 

 

Рис.1. Владимир Зворыкин:  изобретатель электронно-лучевой трубки

Рис.2. Компьютер «Вихрь»

 

Одним из отцов-основателей компьютерной графики считается Айвен Сазерленд (Ivan Sotherland), который в 1962 году все в том же МТИ создал программу компьютерной графики под названием “Блокнот” (Sketchpad) (рис.3). Эта программа могла рисовать достаточно простые фигуры (точки, прямые, дуги окружностей), могла вращать фигуры на экране.

Под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1 (рис.4.), разработанную совместно с IBM.

 

 

 

Рис.3. Программа компьютерной графики под названием “Блокнот”(Sketchpad)

Рис.4. Компьютер «DAC-1«

 

В 1965 году фирма IBM выпустила первый коммерческий графический терминал под названием IBM-2250 (рис.5).

В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4 (рис.6), выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка» (рис.7), который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

 

 

Рис.5. Графический терминал  IBM-2250

Рис.6. Компьютер «БЭСМ4″

Рис.7.  Мультфильм «Кошечка»

 

В 1977 году Commodore выпустила свой РЕТ (рис.8.) (персональный электронный делопроизводитель), а компания Apple создала Apple-II (рис.9). Появление этих устройств вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако ПК стимулировали процесс разработки периферийных устройств: недорогих графопостроителей и графических планшетов.

 

 

 

Рис.8. Персональный электронный делопроизводитель PET

Рис.9. Компьютер «Apple II«

       

В конце 70-х годов для космических кораблей “Шаттл” появились летные тренажеры, основанные на компьютерной графике. В 1982 году на экраны кинотеатров вышел фильм “Трон” (рис.10) в котором впервые использовались кадры, синтезированные на компьютере. В 1984 году был выпущен первый Macintosh, название которого произошло от сорта яблок «Макинтош» (рис.11) с их графическим интерфейсом пользователя. Первоначально областью применения ПК были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области САПР, так и в более общих областях бизнеса и искусства.  

Рис.10. Кадр из фильма «Трон»

Рис.11. Компьютер «Apple Macintosh «

К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательских комплексов. В конце восьмидесятых возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразуя его в стандартные форматы CAD/CAM. Однако, акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных

В 90-х стираются отличия между КГ и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией. Кроме того, появляется возможность работы с видео. Прибавьте аудиовозможности — и вы имеете компьютерную среду мультимедиа.

Все области применения — будь то искусство, инженерная и научная, бизнес/развлечения и — являются сферой применения КГ. Возрастающий потенциал ПК и их громадное число — обеспечивает устойчивый рост индустрии в данной отрасли.

Современный кинематограф, СМИ, реклама — пример широкого применении компьютерной графики

Х/ф. «Трон», «Шрек»/

Формирование общих понятий о компьютерной графике

Авторы чаще всего выделяют два типа (вида) графики: растровую и векторную.

Но, в настоящее время существуют:

  1. Растровая графика.

  2. Векторная графика.

  3. Трехмерная графика.

  4. Фрактальная графика.

  5. Символьная графика

В связи с этим необходимо на парах разобрать все пять видов графики с целью формирования общего представления студентов о предмете и формирования их заинтересованности в нем.

Компьютерная графика (рассмотрим различные определения понятия «компьютерная графика»)

  • область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере [1];

  • новая отрасль знаний, которая, с одной стороны, представляет комплекс аппаратных и программных средств, используемых для формирования, преобразования и выдачи информации в визуальной форме на средства отображения ЭВМ;

  • совокупность методов и приемов для преобразования при помощи ЭВМ данных в графическое представление;

  • вид искусства.

Ожидаемые результаты:

  1. Студенты получат представление о видах графики.

  2. Узнают о сферах применения

  3. Научатся распознавать виды графики

  4. Получат практические навыки применения полученных знаний с использованием различных видов графики.

Виды графики

Представление данных на компьютере в графическом виде впервые было реализовано в середине 50-х годов. Сначала, графика применялась в научно-военных целях.

Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений — от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации. Знание её основ в наше время необходимо любому ученому или инженеру. Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Примене­ние во время деловых совещаний демонстрационных слайдов, под­готовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних ­органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватыва­ет такие несхожие области как видеоигры и полнометражные художественные фильмы.

В зависимости от способа формирования изображений компьютерную графику подразделяют:

Показ презентации «Вектор-растр»

  • Растровая графика.

  • Векторная графика.

  • Трехмерная графика.

  • Фрактальная графика.

  • Символьная графика (устарела и на сегодняшний день практически не используется, поэтому рассматривать ее не будем)

Учащиеся рисуют таблицу и самостоятельно во время лекции заполняют её. Во время подведения итогов урока проверяется заполнение таблицы.

Растровое изображение составляется из мельчайших точек (пикселов) – цветных квадратиков одинакового размера. Растровое изображение подобно мозаике — когда приближаете (увеличиваете) его, то видите отдельные пиксели, а если удаляете (уменьшаете), пиксели сливаются.

Компьютер хранит параметры каждой точки изображения (её цвет, координаты). Причём каждая точка представляется определенным количеством бит (в зависимости от глубины цвета). При открытии файла программа прорисовывает такую картину как мозаику – как последовательность точек массива. Глубина цвета — сколько битов отведено на хранение цвета каждой точки: — в черно-белом — 1 бит — в полутоновом — 8 бит — в цветном — 24 (32) бита на каждую точку.

Растровые файлы имеют сравнительно большой размер, т.к. компьютер хранит параметры всех точек изображения.

Поэтому размер файла зависит от параметров точек и их количества:

  • от глубины цвета точек,

  • от размера изображения (в большем размере вмещается больше точек),

  • от разрешения изображения (при большем разрешении на единицу площади изображения приходится больше точек).

Чтобы увеличить изображение, приходится увеличивать размер пикселей-квадратиков. В итоге изображение получается ступенчатым, зернистым.

Для уменьшения изображения приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается: его мелкие детали становятся неразборчивыми (или могут вообще исчезнуть), картинка теряет четкость.

Исходное изображение

Фрагмент увеличенного изображения

Как Вы думаете, растровое изображение масштабируется с потерей качества или нет? ( Растровое изображение масштабируется с потерей качества)

Растровое изображение нельзя расчленить. Оно «литое», состоит из массива точек. Поэтому в программах для обработки растровой графики предусмотрен ряд инструментов для выделения элементов «вручную».

Например, в Photoshop — это инструменты «Волшебная палочка», Лассо, режим маски и др.

Оригинал Увеличенный фрагмент для показа массива точек

Близкими аналогами являются живопись, фотография

Программы для работы с растровой графикой:

Paint

Microsoft Photo Editor

Adobe Photo Shop

Fractal Design Painter

Micrografx Picture Publisher

Применение:

  • для обработки изображений, требующей высокой точности передачи оттенков цветов и плавного перетекания полутонов. Например, для:

  • ретуширования, реставрирования фотографий;

  • создания и обработки фотомонтажа, коллажей;

  • применения к изображениям различных спецэффектов;

  • после сканирования изображения получаются в растровом виде

Векторное изображение

Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике. Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.

Компьютер хранит элементы изображения (линии, кривые, фигуры) в виде математических формул. При открытии файла программа прорисовывает элементы изображения по их математическим формулам (уравнениям).

Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.

Прямая линия. Ей соответствует уравнение y=kx+b. Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров. Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров – например, координат x1 и х2 начала и конца отрезка. Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+a5=0.

Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = x3 имеет точку перегиба в начале координат. Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0.

Таким образом, кривая третьего порядка описывается девятью параметрами. Описание ее отрезка потребует на два параметра больше.

Кривая третьего порядка (слева) и кривая Безье (справа)

Кривые Безье. Это особый, упрощенный вид кривых третьего порядка Метод построения кривой Безье (Bezier) основан на использовании пары касательных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описываются восемью параметрами, поэтому работать с ними удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка. Таким образом, касательные играют роль виртуальных “рычагов”, с помощью которых управляют кривой.

Векторное изображение масштабируется без потери качества: масштабирование изображения происходит при помощи математических операций: параметры примитивов просто умножаются на коэффициент масштабирования.

Изображение может быть преобразовано в любой размер (от логотипа на визитной карточке до стенда на улице) и при этом его качество не изменится.

Векторное изображение можно расчленить на отдельные элементы (линии или фигуры), и каждый редактировать, трансформировать независимо.

Векторные файлы имеют сравнительно небольшой размер, т.к. компьютер запоминает только начальные и конечные координаты элементов изображения -этого достаточно для описания элементов в виде математических формул. Размер файла как правило не зависит от размера изображаемых объектов, но зависит от сложности изображения: количества объектов на одном рисунке (при большем их числе компьютер должен хранить больше формул для их построения), характера заливки — однотонной или градиентной) и пр. Понятие «разрешение» не применимо к векторным изображениям.

Векторные изображения: более схематичны, менее реалистичны, чем растровые изображения, «не фотографичны».

Близкими аналогами являются слайды мультфильмов, представление математических функций на графике.

Программы для работы с векторной графикой:

Corel Draw

Adobe Illustrator

Fractal Design Expression

Macromedia Freehand

AutoCAD

Применение:

  • для создания вывесок, этикеток, логотипов, эмблем и пр. символьных изображений;

  • для построения чертежей, диаграмм, графиков, схем;

  • для рисованных изображений с четкими контурами, не обладающих большим спектром оттенков цветов;

  • для моделирования объектов изображения;

  • для создания 3-х мерных изображений;

Сравнение растрового и векторного изображения.

Компьютерное растровое изображение представляется в виде прямоугольной матрицы, каждая ячейка которой — цветная точка. Т.е. основным элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *